Department of Materials

Nanotechnology Centre

HIGH FREQUENCY CHARACTERISATION OF MN DOPED SOL GEL Pb_xSr_{1-x}TiO₃ **METAL-INSULATOR-METAL CAPACITORS FOR FREQUENCY AGILE APPLICATIONS**

C.Fragkiadakis, A.Luker, R.V.Wright, P.B.Kirby

Introduction	Experiments
•Frequency agile materials offer large variation in dielectric constant with applied electric field, which makes them ideal candidates for passive components with potentially high tunability and low loss	Fabrication process.
 Increasing interest in Pb_xSr_{1-x}TiO₃ (PST). Investigation of doping of PST with Mn, using the sol-gel technique, and its potential use for the realization of microwave components. 	(a) Silicon Dioxide Silicon Dioxide Silicon Dioxide
Sol-gel deposition method	Silicon Dioxide Silicon Dioxide
 Deposition over large area - Ease of doping - Low cost - Relatively low annealing temperature Good quality, uniform films at relatively low temperatures depending on the composition 	PST Pt Silicon Dioxide (d) Silicon Dioxide Silicon Silicon Dioxide Silicon

Figure 1. (a) Overview and (b) Close-up *optical micrographs of a fabricated 5 um X 5 um CPW* MIM shunt capacitor

High frequency characterisation

Figure 2. Fabrication process. (a) SiO₂ substrate, (b) Platinum deposition and patterning via lift-off, (c) solgel deposition of PST, (d) patterning of PST using wet-etching, (e) deposition of top electrode using electroplating, (f) digital picture of a 4-inch fabricated Silicon wafer containing PST MIM capacitors

Cranfield UNIVERSITY

Cranfield University, Cranfield, Bedfordshire MK43 0AL England

Email: c.fragkiadakis@cranfield.ac.uk Web: http://www.cranfield.ac.uk/sas/materials/nanotech